求解全局优化问题的混合自适应正交遗传算法  被引量:43

Hybrid Self-Adaptive Orthogonal Genetic Algorithm for Solving Global Optimization Problems

在线阅读下载全文

作  者:江中央[1] 蔡自兴[1] 王勇[1] 

机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083

出  处:《软件学报》2010年第6期1296-1307,共12页Journal of Software

基  金:国家自然科学基金Nos.90820302;60805027;高等学校博士学科点专项科研基金No.200805330005;湖南省研究生创新基金No.CX2009B039;中南大学研究生学位论文创新基金No.1373-74334000016~~

摘  要:提出了一种基于正交实验设计的混合自适应正交遗传算法(hybrid self-adaptive orthogonal genetic algorithm,简称HSOGA)以求解全局优化问题,此算法利用正交实验设计方法设计交叉算子,并提出一种自适应正交交叉算子.该自适应正交交叉算子根据父代个体的相似度自适应地调整正交表的因素个数和对父代个体进行因素分割的位置,生成具有代表性的子代个体,以更好地搜索空间.此外,新算法利用自适应正交交叉算子生成均匀分布的初始种群,以保证初始群体的多样性.同时引入了局部搜索策略以提高算法局部搜索能力和收敛速度.通过14个高维的Benchmark函数验证了算法的通用性和有效性.This paper presents a hybrid self-adaptive orthogonal genetic algorithm (HSOGA) based on orthogonal experimental design method for solving global optimization problems.In HSOGA,the orthogonal experimental design method is utilized to design crossover operator,and as a result,a self-adaptive orthogonal crossover operator is proposed.The self-adaptive orthogonal crossover operator self-adaptively adjusts the number of orthogonal array’s factors and the location for dividing the parents into several sub-vectors according to the similarity of the two parents,in order to produce a small but representative set of points as the potential offspring.In addition,in HSOGA the self-adaptive orthogonal crossover operator is also adopted to generate an initial population that is scattered uniformly over the feasible solution space in order to maintain the diversity.Moreover,a local search scheme is incorporated into HSOGA in the purpose of enhancing the local search ability and speeding up the convergence of HSOGA.HSOGA is tested with fourteen benchmark functions.The experimental results suggest that HSOGA is generic and effective.

关 键 词:正交遗传算法 局部搜索 全局优化 正交实验设计 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象