检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学新能源与可再生能源北京市重点实验室,北京102206
出 处:《水利学报》2010年第5期608-612,618,共6页Journal of Hydraulic Engineering
基 金:国家科技支撑计划项目课题(2006BAC05B03);国家重点基础研究发展规划项目课题(2006CB403401);国家自然科学基金创新群体项目(50721006)
摘 要:基于优化理论和博弈理论,研究了在水资源总量紧缺状况下,确保水资源利用整体效益最大和交易双方"双赢"的途径。结果表明:(1)根据优化模型确定各种作物的经济灌溉定额,结合作物种植面积可计算出作物的最佳分配水量,那么初始分配水权量与最佳分配水量的差额理论上就应该是可通过市场交换的水量;(2)在水权交易时,交易价格应该以机会成本为基础,这种机会成本是由用水的边际效益决定的;(3)在优化结果和博弈分析的基础上,根据最优"纳什均衡"状态理论,运用合作型博弈模型进行农业用水户间的水权交易,能够达到水资源优化配置的目的。Based on the combination of optimization theory and game theory,the approaches to ensure the maximum overall efficiency of water use and achieve a win-win situation for both sides of trading under water shortage situation was studied.The results show that: 1.the optimal allocation of water can be calculated based on the economic irrigation norm which is determined by optimal model and its plant area,and the difference between the volume of initial allocated water rights and the optimal allocation of water is the theoretical amount of water traded in the market;2.in the trading of water rights,the transaction price should be based on opportunity cost,which is computed according to the marginal benefits from water use;3.it is possible to optimize the allocation of water resources based on Nash equilibrium state theory combined with cooperative game modeling of trading water among different agricultural water users,using optimization techniques and game theory.
分 类 号:TV213.9[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249