检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱佳[1,2] 王振会[1,2] 金天力[3] 郝晓静[1,2]
机构地区:[1]南京信息工程大学气象灾害省部共建教育部重点实验室,南京210044 [2]南京信息工程大学大气物理学院,南京210044 [3]南京信息工程大学电子与信息工程学院,南京210044
出 处:《气候与环境研究》2010年第3期295-302,共8页Climatic and Environmental Research
基 金:国家重点基础研究发展计划资助2006CB403705
摘 要:基于小波分解(WT)和最小二乘支持向量机(LSSVM)理论,建立了将二者相结合的大气臭氧含量时间序列预测模型。采用香河等4个观测站的月平均臭氧总量观测样本,经小波分解为不同频段的子序列,将这些子序列分别进行LSSVM预测,最后经小波重构得到月平均臭氧总量时间序列预测结果。实验表明该方法能有效预测大气臭氧含量,与支持向量机(SVM)以及人工神经网络(ANN)的预测结果相比,该方法具有较高的预测精度。The atmosphere ozone content forecast model was established based on the combination of wavelet de- composition and advanced Least Square Support Vector Machine (LSSVM) regression. This can be approached in three steps: (1) The observations were decomposed into several different frequency signal subsets, (2) the inde- pendent prediction models of decomposed signals with Takens delay embedding theorem and Least-Squares Support Vector Machine (LSSVM) were set up, (3) independent predicted results were integrated as the final prediction with wavelet reconstruction. Application experiments with data from Xianghe and the other three observation sta- tions show that the method can make better prediction effectively for the atmospheric ozone content, as compared with conventional Support Vector Machine (SVM) and Artificial Neural Network (ANN).
关 键 词:小波分解 最小二乘向量机 时间序列预测 大气臭氧
分 类 号:P456.8[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.217