OVERSHOOTS IN STRESS AND FREE ENERGY CHANGE DURING THE FLOWINDUCED CRYSTALLIZATION OF POLYMERIC MELT IN SHEAR FLOW  被引量:1

OVERSHOOTS IN STRESS AND FREE ENERGY CHANGE DURING THE FLOWINDUCED CRYSTALLIZATION OF POLYMERIC MELT IN SHEAR FLOW

在线阅读下载全文

作  者:张洪斌 

机构地区:[1]Advanced Rheology Institute,School of Chemistry and Chemical Technology,Shanghai Jiao Tong University

出  处:《Chinese Journal of Polymer Science》2010年第4期657-666,共10页高分子科学(英文版)

基  金:supported by the National Natural Science Foundation of China(No.10590355);the Shanghai Leading Academic Discipline Project(No.B202)

摘  要:The effect of pre-shear flow on the subsequent crystallization process of polymeric melt was investigated and a flow-induced crystallization (FIC) model based on the conformation tensor incorporating the pre-shear effect was proposed. The model is capable of predicting the overshoot phenomena of the stress and the flow-induced free energy change of the polymeric system at high pre-shear rates. Under the condition of flow, the increase in the activated nuclei number was contributed by the flow-induced free energy change, which showed an overwhelming effect on the nuclei formation during the pre-shear process at high shear rates. The half crystallization time (t1/2) of polypropylene (PP) as functions of pre-shear rate and pre-shear time at different crystallization temperatures was predicted and compared with the experiment data. Both numerical and experimental results showed that t1/2 of PP decreased dramatically when the flow started but leveled off at long times. It was found that two transformation stages in t1/2 existed within a wide range of shear rates. For the first stage where the melting polymer experienced a relatively weak shear flow, the acceleration of crystallization kinetics was mainly contributed by the steady value of free energy change while in the second stage for high shear rates, strong overshoot in flow-induced free energy change occurred and the crystallization kinetics was thus significantly enhanced. The overshoots in stress and flow-induced free energy change reflected an important role of flow on the primary nucleation especially when the flow was strong enough.The effect of pre-shear flow on the subsequent crystallization process of polymeric melt was investigated and a flow-induced crystallization (FIC) model based on the conformation tensor incorporating the pre-shear effect was proposed. The model is capable of predicting the overshoot phenomena of the stress and the flow-induced free energy change of the polymeric system at high pre-shear rates. Under the condition of flow, the increase in the activated nuclei number was contributed by the flow-induced free energy change, which showed an overwhelming effect on the nuclei formation during the pre-shear process at high shear rates. The half crystallization time (t1/2) of polypropylene (PP) as functions of pre-shear rate and pre-shear time at different crystallization temperatures was predicted and compared with the experiment data. Both numerical and experimental results showed that t1/2 of PP decreased dramatically when the flow started but leveled off at long times. It was found that two transformation stages in t1/2 existed within a wide range of shear rates. For the first stage where the melting polymer experienced a relatively weak shear flow, the acceleration of crystallization kinetics was mainly contributed by the steady value of free energy change while in the second stage for high shear rates, strong overshoot in flow-induced free energy change occurred and the crystallization kinetics was thus significantly enhanced. The overshoots in stress and flow-induced free energy change reflected an important role of flow on the primary nucleation especially when the flow was strong enough.

关 键 词:Crystallization kinetics Half crystallization time FLOW Model Conformation tensor 

分 类 号:TQ320.6[化学工程—合成树脂塑料工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象