基于多重共线性的处理方法  被引量:21

Based on Multiple Collinearity Processing Method

在线阅读下载全文

作  者:满敬銮[1] 杨薇[1] 

机构地区:[1]中南大学数学科学与计算技术学院,长沙410075

出  处:《数学理论与应用》2010年第2期105-109,共5页Mathematical Theory and Applications

摘  要:多重共线性简称共线性是多元线性回归分析中一个重要问题。消除共线性的危害一直是回归分析的一个重点。目前处理严重共线性的常用方法有以下几种:岭回归、主成分回归、逐步回归、偏最小二乘法、Lasso回归等。本文就这几种方法进行比较分析,介绍它们的优缺点,通过实例分析以便于选择合适的方法处理共线性。Multicollinearity referred to as collinearity is a multi - linear regression analysis in a very difficult issue. How to eliminate the collinearity hazards regression analysis has been a priority. The literature at home and abroad to deal with serious collinearity methods commonly used are the following: Ridge regression, principal component regression, stepwise regression, partial least squares method, Lasso regression. In this paper, a comparative analysis of these methods and describe their advantages and disadvantages, easy to select the appropriate ways to deal with collinearity through the example analysis.

关 键 词:岭回归 主成分回归 逐步回归 偏最小二乘法 Lasso回归 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象