机构地区:[1]吉林大学第二医院,吉林省长春市130027 [2]大庆石油学院机械科学与工程学院,黑龙江省大庆市163308 [3]吉林大学南岭校区工程力学系,吉林省长春市130022
出 处:《中国组织工程研究与临床康复》2010年第11期1907-1910,共4页Journal of Clinical Rehabilitative Tissue Engineering Research
摘 要:背景:气管损伤缝合与新型人工气管的研制都需要了解气管软骨的拉伸力学特性以修复、重建气管功能。以往的国内外研究对人工气管的生物力学报道较多,而对人气管软骨生物力学的报道较少。目的:以一维拉伸实验方法观察气管软骨的力学性质。方法:正常人新鲜尸体气管标本2个,标本获取征得家属同意。取出标本,在常温下解冻,以手术刀切取气管软骨试样标本加工成试样长度25mm,宽度5mm,厚度1.8~2.2mm试样20个,在日本岛津电子万能试验机上对20个气管软骨试样进行一维拉伸实验,拉伸实验速度为5mm/min。观察试件拉伸最大载荷、最大位移、最大应力、最大应变、弹性模量、应力-应变曲线。结果与结论:人尸体气管软骨最大载荷为(60.946±10.377)N,最大位移为(1.973±0.159)mm,最大应力为(6.229±1.125)MPa,最大应变为(32.825±2.776)%。气管软骨的应力-应变曲线为指数关系变化的,曲线最初的低坡部分是由于施加拉力的方向与胶原蛋白结构的排列一致,曲线的陡峭部分代表胶原蛋白本身的拉伸刚度。为描述气管软骨一维拉伸中的应力-应变关系,对气管软骨实验数据各取15个点应力-应变数据采用多项式,以最小二乘法进行拟合,得出应力(δ)-应变(ε)关系σ(ε)=-0.1113e5+1.6021e4-7.8216e3+17.9951e2+3.624e式:。实验结果显示,气管软骨具有较强的承受载荷和抵抗变形能力,反映其具有黏性又有弹性的黏弹性力学特性,支持软骨的力学性质与软骨胶原含量呈正相关的观点。BACKGROUND: Tracheal injury suture and the development of a new tracheal prosthesis all need to understand the tensile mechanical properties of tracheal cartilage, so as to repair and rebuild tracheal function. Previous researches on the biomechanics of artificial trachea are many reported, while the biomechanics of human tracheal cartilage is reported less. OBJECTIVE: To investigate the mechanical properties of tracheal cartilage using one-dimensional tensile test method. METHODS: Two fresh cadaver specimens of normal human trachea, with the informed consents of their families, were involved. The specimens were thaw at room temperature, and then tracheal cartilage specimens were cut using scalpel into 20 samples at the length of 25 mm, width 5 mm, thickness 1.8-2.2 mm. The 20 tracheal cartilage samples were subjected to one-dimensional tensile test with Shimadzu electronic universal testing machine Japan, at the tensile test speed of 5 mm/min. The tensile maximum load, maximum displacement, maximum stress, maximum strain, elastic modulus and stress-strain curve of the specimens were observed. RESULTS AND CONCLUSION: The maximum load of human cadaver tracheal cartilage was (60.946±10.377) N, maximum displacement was (1.973±0.159) mm, maximum stress was (6.229±1.125) MPa, maximum strain was (32.825±2.776)%. Tracheal cartilage stress-strain curves was changed along with the index, the initial low slope of the curve was due to the direction of imposed tension was similar with the arrangement of collagen structure, the steep slope represented the tensile strength of collagen. To describe the tracheal cartilage stress-strain relationship in a one-dimensional tension, 15 stress-strain data of the tracheal cartilage experimental data adopted polynomial by the least square fitting method, to obtain stress (δ)-strain (ε) relationship formula: σ (ε )=-0.1113e 5+1.6021e4-7.8216e3+17.9951e2+3.624e. It is indicated that tracheal cartilage has a strong capacity to bear load a
分 类 号:R318.01[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...