Power Consumption Prediction for an Intelligent Air-Cushion Track Vehicle: Fuzzy Expert System  被引量:1

Power Consumption Prediction for an Intelligent Air-Cushion Track Vehicle: Fuzzy Expert System

在线阅读下载全文

作  者:H. Altab R. Ataur A.K.M. Mohiuddin A. Yulfian 

机构地区:[1]Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia [2]Department of Mechanical Engineering, Faculty of Engineering, Universiti lndustri Selangor, Kuala Selangor 45600, Malaysia

出  处:《Journal of Energy and Power Engineering》2010年第5期10-17,共8页能源与动力工程(美国大卫英文)

摘  要:This paper describes the unique structure of an intelligent air-cushion system of a hybrid electrical air-cushion track vehicle working on swamp terrain. Fuzzy expert system (FES) is used in this study to control the swamp tracked vehicle's intelligent air cushion system while it operates in the swamp peat. The system will be effective to control the intelligent air-cushion system with total power consumption (PC), cushion clearance height (CCH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure sensor, micro controller and battery pH sensor will be incorporated with the FES to investigate experimentally the PC, CCH and CP. In this study, we provide illustration how FES might play an important role in the prediction of power consumption of the vehicle's intelligent air-cushion system. The mean relative error of actual and predicted values from the FES model on total power consumption is found as 10.63 %, which is found to be alomst equal to the acceptable limits of 10%. The goodness of fit of the prediction values from the FES model on PC is found as 0.97.

关 键 词:Power consumption fuzzy expert system ultrasonic displacement sensor. 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] U674.943[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象