检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WEI Yin SHI Min
出 处:《Chinese Science Bulletin》2010年第17期1699-1711,共13页
基 金:supported by Shanghai Municipal Committee of Science and Technology (06XD14005 and 08dj1400100-2);National Basic Research Program of China (2009CB825300);the National Natural Science Foundation of China (20872162, 20672127, 20821002 and 20732008)
摘 要:In the past decade, the asymmetric Morita-Baylis-Hillman (MBH)/aza-Morita-Baylis-Hillman (aza-MBH) reaction has attracted great attention because it leads to the formation of densely functionalized products in a catalytic and atom-economic way. The MBH/aza-MBH adducts can be further applied in a wide variety of organic synthesis, such as peptide synthesis and heterocyclic compounds synthesis. After a lot of attempts to improve the enantioselectivity, many types of chiral organocatalysts have been identified as highly enantioselective organocatalysts in MBH/aza-MBH reaction. Especially, certain "privileged chiral catalysts" are highly enantioselective in MBH/aza-MBH reaction, which are designed and developed through introducing bi-/multi-functional groups on the so-called "privileged structures" such as cinchona alkaloids, BINAP/BINOL. This review summarizes the exciting advances about the design and development of chiral catalysts derived from "privileged structures" and their applications in asymmetric MBH/aza-MBH reaction.In the past decade, the asymmetric Morita-Baylis-Hillman (MBH)/aza-Morita-Baylis-Hillman (aza-MBH) reaction has attracted great attention because it leads to the formation of densely functionalized products in a catalytic and atom-economic way. The MBH/aza-MBH adducts can be further applied in a wide variety of organic synthesis, such as peptide synthesis and heterocyclic compounds synthesis. After a lot of attempts to improve the enantioselectivity, many types of chiral organocatalysts have been identified as highly enantioselective organocatalysts in MBH/aza-MBH reaction. Especially, certain "privileged chiral catalysts" are highly enantioselective in MBH/aza-MBH reaction, which are designed and developed through introducing hi-/multi-functional groups on the so-called "privileged structures" such as cinchona alkaloids, BINAP/BINOL. This review summarizes the exciting advances about the design and development of chiral catalysts derived from "privileged structures" and their applications in asymmetric MBH/aza-MBH reaction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229