检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学经济管理学院,北京100191
出 处:《系统工程理论与实践》2010年第6期1016-1020,共5页Systems Engineering-Theory & Practice
基 金:国家自然科学基金创新研究群体科学基金(70821061)
摘 要:提出基于二进正交小波变换和残差GM(1,1)-AR方法的非平稳时间序列预测方案.首先利用Mallat算法对非平稳时间序列进行分解和重构,分离出非平稳时间序列中的低频信息和高频信息;然后对高频信息构建自回归模型,对低频信息则用灰色残差模型进行拟合;最后将各模型的预测结果进行叠加,从而得到原始序列的预测值.该方法不仅能充分拟合低频信息,而且可避免对高频信息的过拟合.实验结果表明,这种方法比传统的非平稳时间序列预测方法具有更高的预测精度.A non-stationary time series prediction method based on wavelet transform and remanet GM(1,1)-AR was proposed.By wavelet decomposition and reconstruction,the non-stationary time series were decomposed into a low frequency signal and several high frequency signals.The high frequency signals were predicted with auto-regression models,and the low frequency was predicted with remanet GM(1,1).The prediction result of the original time series was the superimposition of the respective prediction. This new method avoids the over-fitted for high frequency signals,and adequately fits the low signal of the non-stationary time series,so better predicting performance can be obtained.Experiments show the novel method is of higher accuracy in comparison with the traditional ones.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222