Multi-range controller design for highly nonlinear systems with application to unmanned aerial vehicles  

Multi-range controller design for highly nonlinear systems with application to unmanned aerial vehicles

在线阅读下载全文

作  者:Amir Nassirharand 

机构地区:[1]School of Mechanical,Manufacturing & Materials Engineering,University of Nottingham-Malaysia Campus

出  处:《Journal of Systems Engineering and Electronics》2010年第3期491-495,共5页系统工程与电子技术(英文版)

摘  要:A new procedure for a design of multi-range controllers for use with highly nonlinear systems is developed.The procedure involves obtaining the describing function models of the nonlinear plant by software followed by designing a controller at nominal conditions.Then,the controller parameters are optimized to yield a satisfactory closed-loop response at all operating regimes.Finally,the performance and stability of the closed-loop system comprised of the designed controller and the nonlinear plant are verified.The procedure and the associated software are applied to a nonlinear control problem of the sort encountered in aerospace,and the results are compared with two other approaches.A new procedure for a design of multi-range controllers for use with highly nonlinear systems is developed.The procedure involves obtaining the describing function models of the nonlinear plant by software followed by designing a controller at nominal conditions.Then,the controller parameters are optimized to yield a satisfactory closed-loop response at all operating regimes.Finally,the performance and stability of the closed-loop system comprised of the designed controller and the nonlinear plant are verified.The procedure and the associated software are applied to a nonlinear control problem of the sort encountered in aerospace,and the results are compared with two other approaches.

关 键 词:control theory optimization describing functions Fourier analysis stabilization. 

分 类 号:V249[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象