基于二维小波分析的景观特征尺度识别  被引量:9

Recognition of landscape characteristic scale based on two-dimension wavelet analysis

在线阅读下载全文

作  者:高艳妮[1,2] 陈玮[1] 何兴元[1] 李小玉[1] 

机构地区:[1]中国科学院沈阳应用生态研究所,沈阳110016 [2]中国科学院研究生院,北京100049

出  处:《应用生态学报》2010年第6期1523-1529,共7页Chinese Journal of Applied Ecology

基  金:国家自然科学基金项目(40971272);中国科学院知识创新工程重要方向项目(KZCX2-YW-342-3)资助

摘  要:采用3种常用小波基(Haar、Daubechies和Symlet),探讨了二维小波分析在沈阳地区城市、城乡交错区和农村3种景观类型特征尺度识别中的有效性.由于二维小波分析的变换尺度必须为2的整数次幂,这会导致景观中一些特征尺度无法精确识别,故本文将各景观类型影像像元大小分别重采样为3、3.5、4和4.5m,以增加分析时的尺度密度.结果表明:应用二维小波分析可清晰地识别景观特征尺度;Haar、Daubechies、Symle可分别作为城乡交错区景观、城市景观和农村景观特征尺度识别的最优小波基;Haar和Symlet均可应用于农村景观精细特征尺度的识别和城乡交错区景观边界的检测;Daubechies和Symlet可分别用于城市景观和农村景观的边界检测.Three wavelet bases,i.e.,Haar,Daubechies,and Symlet,were chosen to analyze the validity of two-dimension wavelet analysis in recognizing the characteristic scales of the urban,peri-urban,and rural landscapes of Shenyang. Owing to the transform scale of two-dimension wavelet must be the integer power of 2,some characteristic scales cannot be accurately recognized. Therefore,the pixel resolution of images was resampled to 3,3.5,4,and 4.5 m to densify the scale in analysis. It was shown that two-dimension wavelet analysis worked effectively in checking characteristic scale. Haar,Daubechies,and Symle were the optimal wavelet bases to the peri-urban landscape,urban landscape,and rural landscape,respectively. Both Haar basis and Symlet basis played good roles in recognizing the fine characteristic scale of rural landscape and in detecting the boundary of peri-urban landscape. Daubechies basis and Symlet basis could be also used to detect the boundary of urban landscape and rural landscape,respectively.

关 键 词:二维小波分析 特征尺度 景观格局 沈阳 

分 类 号:S181[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象