基于MIMO-SVR的供热负荷日预报方法  

Daily heat load forecasting method based on multi-input multi-output support vector regression

在线阅读下载全文

作  者:张永明[1] 邓盛川[1] 李沛岩[1] 齐维贵[1] 

机构地区:[1]哈尔滨工业大学电气工程及自动化学院,哈尔滨150001

出  处:《沈阳工业大学学报》2010年第3期331-335,共5页Journal of Shenyang University of Technology

基  金:国家"十一五"科技支撑计划项目(2006BAJ01A04);哈尔滨市科技创新人才基金资助项目(2006RFXXG010)

摘  要:针对城市集中供热系统中提前24小时的日负荷预报方法具有较大误差问题,提出了一种基于多输入多输出支持向量回归(MIMO-SVR)的供热负荷日预报方法.该方法利用MIMO-SVR的多输出特性通过一步预报直接获得24小时的日负荷预报.通过对某热力站实际供热负荷数据进行仿真研究,结果表明,MIMO-SVR日预报的平均相对误差为2.47%,较多输入单输出支持向量回归(MISO-SVR)预报精度高,能够满足供热工程的应用需要.In order to solve the large error problem of 24 hours advance daily heat load forecasting methods in city district heating system,a mthod of daily heat load forecasting method based on multi-input multi-output support vector regression (MIMO-SVR) was proposed. The method can directly obtain 24 hours daily heat load forecasting with the multi-output charactreristic of MIMO-SVR. The practical heat load data taken from a heating supply substation was simulated. The simulaion results show that the mean relative error of MIMO-SVR based daily forecasting is 2. 47% . The MIMO-SVR based forecasting method can give the higher precision compared with the forecasting method based on the multi-input single-output support vector regression (MISO-SVR),and can meet the application demands in heat supply engineering.

关 键 词:集中供热 热力站 负荷预报 日预报 节能 支持向量回归 多输入单输出支持向量回归 多输入多输出支持向量回归 

分 类 号:TK39[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象