机构地区:[1]Key Laboratory of Computer System and Architecture,Institute of Computing Technology,Chinese Academy of Sciences [2]Graduate University of Chinese Academy of Sciences
出 处:《Journal of Computer Science & Technology》2010年第4期886-894,共9页计算机科学技术学报(英文版)
基 金:Supported by the National Basic Research 973 Program of China under Grant No.2005CB321602;the National Natural Science Foundation of China under Grant No.60736012;the National High Technology Research and Development 863 Program of China under Grant Nos.2007AA01Z110 and 2009AA01Z103
摘 要:The advent of multi-core/many-core chip technology offers both an extraordinary opportunity and a profound challenge. In particular, computer architects and system software designers are faced with a unique opportunity to introducing new architecture features as well as adequate compiler technology -- together they may have profound impact. This paper presents a case study (using the 1-D Jacobi computation) of compiler-amendable performance optimization techniques on a many-core architecture Godson-T. Godson-T architecture has several unique features that are chosen for this study: 1) chip-level global addressable memory in particular the scratchpad memories (SPM) local to the processing cores; 2) fine-grain memory based synchronization (e.g., full-empty bit for fine-grain synchronization). Leveraging state-of-the-art performance optimization methods for 1-D stencil parallelization (e.g., timed tiling and variants), we developed and implement a number of many-core-based optimization for Godson-T. Our experimental study shows good performance in both execution time speedup and scalability, validate the value of globally accessed SPM and fine-grain synchronization mechanism (full-empty bits) under the Godson-T, and provides some useful guidelines for future compiler technology of many-core chip architectures.The advent of multi-core/many-core chip technology offers both an extraordinary opportunity and a profound challenge. In particular, computer architects and system software designers are faced with a unique opportunity to introducing new architecture features as well as adequate compiler technology -- together they may have profound impact. This paper presents a case study (using the 1-D Jacobi computation) of compiler-amendable performance optimization techniques on a many-core architecture Godson-T. Godson-T architecture has several unique features that are chosen for this study: 1) chip-level global addressable memory in particular the scratchpad memories (SPM) local to the processing cores; 2) fine-grain memory based synchronization (e.g., full-empty bit for fine-grain synchronization). Leveraging state-of-the-art performance optimization methods for 1-D stencil parallelization (e.g., timed tiling and variants), we developed and implement a number of many-core-based optimization for Godson-T. Our experimental study shows good performance in both execution time speedup and scalability, validate the value of globally accessed SPM and fine-grain synchronization mechanism (full-empty bits) under the Godson-T, and provides some useful guidelines for future compiler technology of many-core chip architectures.
关 键 词:many-core stencil Jacobi compiler SPM fine-grain synchronization
分 类 号:TP332[自动化与计算机技术—计算机系统结构] TG76[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...