Effect of following strength on pedestrian counter flow  被引量:3

Effect of following strength on pedestrian counter flow

在线阅读下载全文

作  者:邝华 李兴莉 韦艳芳 宋涛 戴世强 

机构地区:[1]Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University [2]College of Physics and Technology,Guangxi Normal University [3]School of Applied Science,Taiyuan University of Science and Technology [4]Department of Physics and Information Science,Yulin Normal University

出  处:《Chinese Physics B》2010年第7期179-187,共9页中国物理B(英文版)

基  金:supported by the National Basic Research Program of China (Grant No. 2006CB705500);the National Natural Science Foundation of China (Grant Nos. 10962002,10902076 and 10532060)

摘  要:This paper proposes a modified lattice gas model to simulate pedestrian counter flow by considering the effect of following strength which can lead to appropriate responses to some complicated situations. Periodic and open boundary conditions are adopted respectively. The simulation results show that the presented model can reproduce some essential features of pedestrian counter flows, e.g., the lane formation and segregation effect. The fundamental diagrams show that the complete jamming density is independent of the system size only when the width W and the length L are larger than some critical values respectively, and the larger asymmetrical conditions can better avoid the occurrence of deadlock phenomena. For the mixed pedestrian flow, it can be found that the jamming cluster is mainly caused by those walkers breaking the traffic rules, and the underlying mechanism is analysed. Furthermore, the comparison of simulation results and the experimental data is performed, it is shown that this modified model is reasonable and more realistic to simulate and analyse pedestrian counter flow.This paper proposes a modified lattice gas model to simulate pedestrian counter flow by considering the effect of following strength which can lead to appropriate responses to some complicated situations. Periodic and open boundary conditions are adopted respectively. The simulation results show that the presented model can reproduce some essential features of pedestrian counter flows, e.g., the lane formation and segregation effect. The fundamental diagrams show that the complete jamming density is independent of the system size only when the width W and the length L are larger than some critical values respectively, and the larger asymmetrical conditions can better avoid the occurrence of deadlock phenomena. For the mixed pedestrian flow, it can be found that the jamming cluster is mainly caused by those walkers breaking the traffic rules, and the underlying mechanism is analysed. Furthermore, the comparison of simulation results and the experimental data is performed, it is shown that this modified model is reasonable and more realistic to simulate and analyse pedestrian counter flow.

关 键 词:following behaviour lattice gas model counter flow 

分 类 号:O411.3[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象