检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]厦门大学数学科学学院,厦门361005 [2]集美大学理学院,厦门361021
出 处:《计算机辅助设计与图形学学报》2010年第7期1094-1098,共5页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(10571145);厦门市科技计划项目(3502Z20083012)
摘 要:针对Bézier曲线不能精确表示圆弧,导致在基于Bézier曲线曲面造型的CAD系统中存在圆弧的Bézier曲线逼近问题,提出一种用四次Bézier曲线逼近圆弧的方法.根据圆弧与Bézier曲线都具有的对称性确定带待定参数的Bézier曲线的控制顶点;再由误差函数的零点分布情况确定待定参数,给出控制顶点的计算公式、误差的解析表达式和逼近阶.与采用已有方法得到的最好结果相比较,文中方法的逼近阶虽然也是8,但系数不到已有方法的一半,因而具有更好的逼近精度.To address the problem that Bézier curves can not accurately represent circular arcs, a new approximation method for circular arcs by quartic Bézier curves is presented. Firstly, based on the symmetry of circular arcs and Bézier curves, the control points with unknown parameters are determined. Then according to the distribution of roots of the error function, the parameters of control points are further determined. The analytic expression of error function and the approximation order are given in this paper. Compared to the previously known best results, the approximation order of the proposed method is also eight, but the coefficient is less than half of the previously best results and thus our method has better approximation accuracy.
关 键 词:圆弧 四次BÉZIER曲线 逼近阶 HAUSDORFF距离
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.14