基于改进HHT理论的大型桥梁动态特性分析  被引量:9

The Dynamic Characteristics Analysis for the Large Bridge Based on the Improved Hilbert-Huang Transformation

在线阅读下载全文

作  者:徐佳[1,2] 黄声享[3] 麻凤海[4] 

机构地区:[1]辽宁工程技术大学测绘与地理科学学院,阜新市123000 [2]辽宁工程技术大学地理空间信息技术与应用实验室,阜新市123000 [3]武汉大学测绘学院,武汉市430079 [4]大连大学岩土与结构工程研究中心,大连市116622

出  处:《武汉大学学报(信息科学版)》2010年第7期801-805,共5页Geomatics and Information Science of Wuhan University

基  金:国家科技支撑计划资助项目(2006BAG04B03);辽宁省教育厅资助项目(2008295);辽宁工程技术大学地理空间信息技术与应用实验室开放研究基金资助项目(2006009);辽宁工程技术大学优秀青年科学研究基金资助项目(07A107)

摘  要:针对Hilbert-Huang变换(HHT)中原经验模态分解法在信号存在中断时出现模态混叠问题,研究了利用噪声辅助的分解方法——总体平均经验模态分解法(ensemble empirical mode decomposition,EEMD)的分解过程及其噪声控制。将此改进的分解方法结合随机减量技术获取振动信号的自由衰减响应,为进一步的Hilbert变换识别模态参数提供有效数据。将该方法结合武汉白沙洲长江大桥GPS实测数据进行了模态识别,结果表明,利用噪声辅助的总体平均经验模态分解法(EEMD)能够有效地克服分解过程中的模态混叠现象,使桥梁模态清晰地分解开来。To avoid the problem of modes mixing caused by the intermittent in the data,a method of the ensemble empirical mode decompostion(EEMD) is studied in this paper along with its error effects.In this method the white noise is used to improve the decomposion results.Then the free vibration response can by obtained by the random decrement technique(RDT) together with the improved decomposion results.This can provide the available data for Hilbert transformation to identify the modal parameters.Finally,this is applied on the GPS dynimic monitoring data of the Wuhan Baishazhou Bridge.The results show that the mode parameters can be identify by the EEMD together with RDT effectively.

关 键 词:总体经验模态分解法 动态特性 随机减量技术 希尔伯特-黄变换 

分 类 号:P228.42[天文地球—大地测量学与测量工程] P258[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象