检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学电气与信息工程学院,湖南省长沙市410082
出 处:《电网技术》2010年第7期138-142,共5页Power System Technology
基 金:国家自然科学基金项目(50677014);国家863高技术基金项目(2006AA04A104);新世纪优秀人才支持计划项目(NCET-04-0767)~~
摘 要:在混沌局域预测算法中,通常使用欧氏距离和关联度衡量相点间的相关性,以确定参考邻域,但这些参量不能有效衡量相点相关性。在极坐标系下,将相点视为向量,则相点间相关性应由向量间的模比值和向量夹角共同确定。根据以上思路,将相点向量的模比值和夹角余弦值融合为一个衡量相点相关性的参量,以确定参考邻域。在预测参数识别中,以相点间的模和夹角作为优化目标,提出了新的线性拟合参数求解算法。将以上算法应用到某城市的电力负荷短期预测中,获得了令人满意的预测效果。In chaotic local forecasting algorithm, Euclid distance and correlation degree are usually used to measure correlativity between phase points to decide the reference neighborhood, however the correlativity of phase points cannot be effectively measured by these parameters. In polar coordinate system the phase points are regarded as vector, in that way the correlativity between phase points should be jointly determined by the ratio of modules between vectors and the included angle of vectors to decide reference neighborhood. According to above idea, the ratio of modules between vectors and the cosine of included angle of vectors are amalgamated into a parameter to measure the correlativity between phase points to decide reference neighborhood. In forecasting parameter identification, the modules and included angles between phase points are taken as optimization objective, then a new algorithm to solve linear fitting parameter is proposed. Applying the proposed algorithm to short-term urban load forecasting, satisfied forecasting results are obtained.
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.200.145