A novel four-way combining catalysts for simultaneous removal of exhaust pollutants from diesel engine  被引量:11

A novel four-way combining catalysts for simultaneous removal of exhaust pollutants from diesel engine

在线阅读下载全文

作  者:Jian Liu,Jie Xu,Zhen Zhao,Aijun Duan,Guiyuan Jiang,Yanni Jing State Key Laboratory of Heavy Oil Processing,China University of Petroleum,Beijing 102249,China. 

出  处:《Journal of Environmental Sciences》2010年第7期1104-1109,共6页环境科学学报(英文版)

基  金:supported by the Hi-Tech Research and Development Program (863) of China (No.SQ2009AA06Z313);the National Natural Science Foundation of China (No. 20803093,20833011);the Doctor Selected Foundation for the University of State Education Ministry of China (No. 200804251016);the Beijing Outstanding Ph.D Thesis Foundation (No. YB20091141401)

摘  要:A novel four-way combining catalysts containing double layers was applied to simultaneously remove four kinds of exhaust pollutants (NOx, CO, HC and PM) emitted from diesel engine. The four-way catalysts were characterized using scanning electron microscope (SEM) and Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS). Their catalytic performances were evaluated by temperature-programmed reaction technology. The double layer catalysts could effectively remove the four main pollutants. The highest catalytic activity was given by the two-layered catalysts of La0.6 K0.4CoO3/Al2O3 and W/HZSM-5. Under the simulated exhaust gases conditions, the peak temperature of the soot combustion was 421℃, the maximal conversion of NO to N2 was 74%, the temperature of the HC total conversion was 357℃, and the maximum conversion ratio of CO was 99%.A novel four-way combining catalysts containing double layers was applied to simultaneously remove four kinds of exhaust pollutants (NOx, CO, HC and PM) emitted from diesel engine. The four-way catalysts were characterized using scanning electron microscope (SEM) and Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS). Their catalytic performances were evaluated by temperature-programmed reaction technology. The double layer catalysts could effectively remove the four main pollutants. The highest catalytic activity was given by the two-layered catalysts of La0.6 K0.4CoO3/Al2O3 and W/HZSM-5. Under the simulated exhaust gases conditions, the peak temperature of the soot combustion was 421℃, the maximal conversion of NO to N2 was 74%, the temperature of the HC total conversion was 357℃, and the maximum conversion ratio of CO was 99%.

关 键 词:four-way combining catalyst diesel engine exhaust double layers perovskite oxides zeolite catalysts 

分 类 号:TK421.5[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象