Convergence Rates of Tail Probabilities for Sums under Dependence Assumptions  

Convergence Rates of Tail Probabilities for Sums under Dependence Assumptions

在线阅读下载全文

作  者:Xiao Rong YANG Wei Dong LIU Ke Ang FU Lin Xin ZHANG 

机构地区:[1]School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, P. R. China [2]Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China [3]School of Statistics and Mathematics, Zhejiang Gongshang University, Han qzhou 310018, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2010年第8期1591-1600,共10页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (Grant Nos. 10771192 and 10671176) 1)

摘  要:Let {X,X1,X2,……}be a zero mean strictly stationary Ф-mixing sequence. Set Sn=∑n k=1 and f(x^p)=∑∞n=1 n^r-2P(|Sn|≥x^p√ES2nlog n),When ε〉(√2)1/p,for p〉1/2 and r〉1,the conditions for ∫∞ε f(x^p)dx 〈∞ to hold is established, by using coupled methods together withstrong approximation, which are different from the traditional symmetrization and Hoffman-JФrgensen inequality.Let {X,X1,X2,……}be a zero mean strictly stationary Ф-mixing sequence. Set Sn=∑n k=1 and f(x^p)=∑∞n=1 n^r-2P(|Sn|≥x^p√ES2nlog n),When ε〉(√2)1/p,for p〉1/2 and r〉1,the conditions for ∫∞ε f(x^p)dx 〈∞ to hold is established, by using coupled methods together withstrong approximation, which are different from the traditional symmetrization and Hoffman-JФrgensen inequality.

关 键 词:Complete convergence mixing sequences strong approximation 

分 类 号:O212.1[理学—概率论与数理统计] O211.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象