Probabilistic Constructions of B_2[g] Sequences  

Probabilistic Constructions of B_2[g] Sequences

在线阅读下载全文

作  者:Javier CILLERUELO 

机构地区:[1]Instituto de Ciencias Matermáticas(CSIC-UAM-UCM) [2]Department of Mathematics,Universidad Autónoma de Madrid

出  处:《Acta Mathematica Sinica,English Series》2010年第7期1309-1314,共6页数学学报(英文版)

基  金:Supported by project MTM 2008-03880 of MICINN (Spain) ;by the joint Madrid Region-UAM project TENU3 (CCG08-UAM/ESP-3906)

摘  要:We use the probabilistic method to prove that for any positive integer g there exists an infinite B2[g] sequence A = {ak} such that ak ≤ k^2+1/g(log k)^1/g+0(1) as k→∞. The exponent 2+1/g improves the previous one, 2 + 2/g, obtained by Erdos and Renyi in 1960. We obtain a similar result for B2 [g] sequences of squares.We use the probabilistic method to prove that for any positive integer g there exists an infinite B2[g] sequence A = {ak} such that ak ≤ k^2+1/g(log k)^1/g+0(1) as k→∞. The exponent 2+1/g improves the previous one, 2 + 2/g, obtained by Erdos and Renyi in 1960. We obtain a similar result for B2 [g] sequences of squares.

关 键 词:Sidon sets B2 [g] sequences probabilistic method 

分 类 号:O212[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象