检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematics and Statistics, Huazhong Normal University
出 处:《Acta Mathematica Scientia》2010年第4期1347-1356,共10页数学物理学报(B辑英文版)
基 金:supported by NSFC (10631030);the fund of CCNU for Ph.D Students (2009021)
摘 要:The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this article is concerned with the nonlinear stability of gaseous stars in the non-isentropic case, when 34 γ2, S(x,t) is a smooth bounded function. First, we verify that the steady states are minimizers of the energy via concentration-compactness method; then using the variational approach we obtain the stability results of the non-isentropic flow.The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this article is concerned with the nonlinear stability of gaseous stars in the non-isentropic case, when 34 γ2, S(x,t) is a smooth bounded function. First, we verify that the steady states are minimizers of the energy via concentration-compactness method; then using the variational approach we obtain the stability results of the non-isentropic flow.
关 键 词:Euler-Poisson equations non-isentropic STABILITY
分 类 号:O236[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.173.146