检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Feng Li Wenbo Liu Jiuyou Tang Jinfeng Chen Hongning Tong Bin Hu Chunlai Li Jun Fang Mingsheng Chen Chengcai Chu
机构地区:[1]State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2]Graduate School of the Chinese Academy of Sciences, Beijing 100101, China
出 处:《Cell Research》2010年第7期838-849,共12页细胞研究(英文版)
基 金:Supplementary information is linked to the online version of the paper on the Cell Research website. Acknowledgments We thank Professor Gary Loake (University of Edinburg, UK) for critical reading of this manuscript. This work was supported by grants from Ministry of Agriculture of China (2008ZX08001), Ministry of Science and Technology of China (2009CB 118506, 2006AA10A101), and National Natural Science Foundation of China (30671128, 30621001).
摘 要:The architecture of the panicle, including grain size and panicle morphology, directly determines grain yield. Panicle erectness, which is selected for achieving ideal plant arehitecture in the northern part of China, has drawn increasing attention of rice breeders. Here, dense and erect panicle 2 (dep2) mutant, which shows a dense and erect panicle phenotype, was identified. DEP2 encodes a plant-specific protein without any known functional domain. Expression profiling of DEP2 revealed that it is highly expressed in young tissues, with most abundance in young panicles. Morphological and expression analysis indicated that mutation in DEP2 mainly affects the rapid elongation of rachis and primary and secondary branches, but does not impair the initiation or formation of panicle primordia. Further analysis suggests that decrease of panicle length in dep2 is caused by a defect in cell proliferation during the exponential elongation of panicle. Despite a more compact plant type in the dep2 mutant, no significant alteration in grain production was found between wild type and dep2 mutant. Therefore, the study of DEP2 not only strengthens our understanding of the molecular genetic basis of panicle architecture but also has important implications for rice breeding.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28