Track dynamic behavior at rail welds at high speed  被引量:9

Track dynamic behavior at rail welds at high speed

在线阅读下载全文

作  者:Guangwen Xiao Xinbiao Xiao Jun Guo Zefeng Wen Xuesong Jin 

机构地区:[1]State Key Laboratory of Traction Power, Southwest Jiaotong University, 610031 Chengdu, China

出  处:《Acta Mechanica Sinica》2010年第3期449-465,共17页力学学报(英文版)

基  金:supported by the National Basic Research Program of China(2007CB714702);the National Natural Science Foundation of China(50821063,50675183 and 50875221)

摘  要:As a vehicle passing through a track with different weld irregularities, the dynamic performance of track com- ponents is investigated in detail by using a coupled vehi- cle-track model. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom, and a Timoshenko beam is used to model the rails which are dis- cretely supported by sleepers. In the track model, the sleepers are modeled as rigid bodies accounting for their vertical, lat- eral and rolling motions and assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the study of the coupled vehicle and track dynamics, the Hertizian contact theory and the theory proposed by Shen-Hedrick-Elkins are, respectively, used to calculate normal and creep forces between the wheel and the rails. In the calculation of the normal forces, the coefficient of the normal contact stiffness is determined by transient contact condition of the wheel and rail surface. In the calcu- lation of the creepages, the lateral, roll-over motions of the rail and the fact that the relative velocity between the wheel and rail in their common normal direction is equal to zero are simultaneously taken into account. The motion equations of the vehicle and track are solved by means of an explicit integration method, in which the rail weld irregularities are modeled as local track vertical deviations described by some ideal cosine functions. The effects of the train speed, the axle load, the wavelength and depth of the irregularities, and the weld center position in a sleeper span on the wheel-rail impact loading are analyzed. The numerical results obtained are greatly useful in the tolerance design of welded rail pro- file irregularity caused by hand-grinding after rail welding and track maintenances.As a vehicle passing through a track with different weld irregularities, the dynamic performance of track com- ponents is investigated in detail by using a coupled vehi- cle-track model. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom, and a Timoshenko beam is used to model the rails which are dis- cretely supported by sleepers. In the track model, the sleepers are modeled as rigid bodies accounting for their vertical, lat- eral and rolling motions and assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the study of the coupled vehicle and track dynamics, the Hertizian contact theory and the theory proposed by Shen-Hedrick-Elkins are, respectively, used to calculate normal and creep forces between the wheel and the rails. In the calculation of the normal forces, the coefficient of the normal contact stiffness is determined by transient contact condition of the wheel and rail surface. In the calcu- lation of the creepages, the lateral, roll-over motions of the rail and the fact that the relative velocity between the wheel and rail in their common normal direction is equal to zero are simultaneously taken into account. The motion equations of the vehicle and track are solved by means of an explicit integration method, in which the rail weld irregularities are modeled as local track vertical deviations described by some ideal cosine functions. The effects of the train speed, the axle load, the wavelength and depth of the irregularities, and the weld center position in a sleeper span on the wheel-rail impact loading are analyzed. The numerical results obtained are greatly useful in the tolerance design of welded rail pro- file irregularity caused by hand-grinding after rail welding and track maintenances.

关 键 词:Rail weld. Irregularity. Vehicle-trackcouplingdynamics 

分 类 号:U238[交通运输工程—道路与铁道工程] TG409[金属学及工艺—焊接]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象