检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学计算机及信息工程学院,江苏常州213022
出 处:《智能系统学报》2010年第3期272-276,共5页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60972101);国家"863"计划资助项目(2007AA11Z227);江苏省社会发展科技项目(BS2007058)
摘 要:针对传统智能视频监控中背景更新算法计算量大、对光照变化敏感等问题,提出了一种基于分块分类的背景更新算法.首先,根据视频序列获得初始的背景参考图像,采用背景差分法得到当前帧的差分图像.然后,将差分图像采用分块处理,按照子块的均值特征对各子块图像进行前景块和背景块的分类.最后,根据分类情况采用不同的背景更新策略,实现背景的实时更新.该算法以块为操作对象,相比单个像素处理时的计算量更小,运算速度更快.实验结果表明,新算法能较好地适应光照变化,背景更新效果较好.Background update algorithms have excessive calculation overhead and are sensitive to changes in light-ing.In order to solve these problems,a background update algorithm based on block classification was proposed.First,image differences were obtained by subtracting the incoming frame from the reference image.Then the image differences were divided into blocks of equal size.Each block was then classified as a background block or a fore-ground block according to the blocks’predominant features.Different updating strategies were then employed ac-cording to the classification of the block.In this way,real-time background updates were possible.This algorithm overcame problems of computational redundancy arising in other pixel-background models.Execution speed was im-proved because object-operations were performed on every block.Experimental results showed that this method well adapts to changes in illumination.
关 键 词:图像处理 智能视频监控 背景差分 分块 背景更新
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.51.133