Northward-shift of temperature zones in China's eco-geographical study under future climate scenario  被引量:17

Northward-shift of temperature zones in China's eco-geographical study under future climate scenario

在线阅读下载全文

作  者:WU Shaohong ZHENG Du YIN Yunhe LIN Erda XU Yinlong 

机构地区:[1]Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China [2]Institute of Tibetan Plateau Research, CAS, Beijing 100085, China [3]Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China

出  处:《Journal of Geographical Sciences》2010年第5期643-651,共9页地理学报(英文版)

基  金:National Natural Science Foundation of China, No. 40771016; National Scientific and Technical Supporting Programs during the 11 th Five-Year Plan of China, No.2007BACO3A02

摘  要:Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961-2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961-1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North bor- derlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.Despite the well-documented effects of global climate change on terrestrial species' ranges, eco-geographical regions as the regional scale of ecosystems have been poorly studied especially in China with diverse climate and ecosystems. Here we analyse the shift of temperature zones in eco-geographical study over China using projected future climate scenario. Projected climate data with high resolution during 1961-2080 were simulated using regional climate model of PRECIS. The number of days with mean daily temperature above 10℃ and the mean temperature of January are usually regarded as the principal criteria to indicate temperature zones, which are sensitive to climate change. Shifts due to future climate change were calculated by comparing the latitude of grid cells for the future borderline of one temperature zone with that for baseline period (1961-1990). Results indicated that the ranges of Tropical, Subtropical, Warm Temperate and Plateau Temperate Zones would be enlarged and the ranges of Cold Temperate, Temperate and Plateau Sub-cold Zones would be reduced. Cold Temperate Zone would probably disappear at late this century. North bor- derlines of temperature zones would shift northward under projected future climate change, especially in East China. Farthest shifts of the north boundaries of Plateau Temperate, Subtropical and Warm Temperate Zones would be 3.1°, 5.3° and 6.6° latitude respectively. Moreover, northward shift would be more notably in northern China as future temperature increased.

关 键 词:temperature zone climate change SHIFT eco-geographical study 

分 类 号:P902[天文地球—自然地理学] S812.3[农业科学—草业科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象