基于脉冲耦合神经网络的图像NMI特征提取及检索方法  被引量:14

Image NMI Feature Extraction and Retrieval Method Based on Pulse Coupled Neural Networks

在线阅读下载全文

作  者:刘勍[1,2] 许录平[1] 马义德[3] 王勇[1] 

机构地区:[1]西安电子科技大学电子工程学院,西安710071 [2]天水师范学院物理与信息科学学院,天水741001 [3]兰州大学信息科学与工程学院,兰州730000

出  处:《自动化学报》2010年第7期931-938,共8页Acta Automatica Sinica

基  金:国家高技术研究发展计划(863计划)(2007AA12Z323);国家自然科学基金(60772139;60872109);高等学校博士学科点专项科研基金(200807011007);天水师范学院"青蓝"人才工程基金资助~~

摘  要:为了简单有效地提取图像重要特征信息,从而更好地提高检索图像的精度,提出了一种基于脉冲耦合神经网络(Pulse coupled neural networks,PCNN)的图像归一化转动惯量(Normalized moment of inertia,NMI)特征提取及检索算法.首先利用改进简化PCNN模型相似神经元同步时空特性及指数衰降机制将图像分解为具有相关性的二值系列图像,然后提取反映原始图像目标形状、结构分布二值系列图像的一维NMI特征矢量信号,并将其应用在图像检索中;同时,考虑到二值系列图像间的相关性及不同图像间NMI序列值的差异性,引入了马氏距离结合Pearson积矩相关法的综合相似性度量方法.实验结果表明,所提算法对图像特征矢量序列具有良好抗几何畸变不变特性及对图像表述的唯一性,且具有较好的图像检索效果.In order to simply and effectively extract the information of important features in the image so as to improve the accuracy of the image retrieval, a novel algorithm of image normalized moment of inertia (NMI) feature extraction and retrieval based on pulse coupled neural networks (PCNN) is put forward. Firstly, the image is segmented into a series of binary correlation images using synchronous spatial-temporal characteristics of similar neurons and exponential attenuation mechanism of improved and simplified PCNN, and then a one-dimensional NMI feature vector signal of the binary series images, which can reflect the target shape and structure of the original image, is extracted, and applied to the image retrieval. Meanwhile, considering the correlation between binary series images and NMI sequence values differences between different images, the method of compounded similarity measurement of the combination of Mahalanobis distance and Pearson product-moment correlation is introduced. Experimental results show that the proposed algorithm has good performance of anti-geometric distortions and the uniqueness for different images expression to the vector sequence of image features, and has better image retrieval results.

关 键 词:图像处理 图像检索 脉冲耦合神经网络 二值序列图像 归一化转动惯量特征矢量 综合相似性度量 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象