检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学电子信息学院,湖北武汉430079 [2]黄淮学院国际学院,河南驻马店463000
出 处:《电视技术》2010年第7期99-103,共5页Video Engineering
基 金:中央高校基本科研业务费专项资金(20102120103000004);湖北省科技攻关项目(2006AA301B44);河南省科技攻关项目(092102210398);郑州市重大科技攻关项目(072SGZS38042)
摘 要:目前基于二维的正面人脸识别面临着两大难题,一是光照、表情变化问题,二是遮挡、噪声问题。这些正是研究人脸表情、光照、遮挡和噪声变化的稳健性人脸自动识别问题。将识别问题看作是多个线性回归模型中的分类问题,并用稀疏表示理论解决这些问题。基于奇异值与稀疏表示理论可以显著提高对噪声和遮挡变化的稳健性并降低计算复杂度。在公用的人脸数据库上进行实验,并证实算法的有效性。At present, there are two main barriers toward positive two-dimensional-based face recognition: one is the variation of illumination and expression, the other is the problem of occlusion and noise. The problem of robust recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and noise will be researched in this paper. The recognition problem is taken as one of classifying among multiple linear regression models, and sparse signal representation is used to solve this problem. The method based on singular value and sparse representation can significantly improve the robustness and reduce the computational complexity. Conducting extensive experiments on publicly available databases verify the efficacy of the proposed algorithm, and corroborate the above claims.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171