非高斯噪声下基于MD准则与Givens旋转的EP信号提取方法  被引量:2

Estimation of Evoked Potentials Based on MD Criterion and Givens Matrix in Non-Gaussian Noise Environments

在线阅读下载全文

作  者:查代奉[1] 高玉宝[1] 熊美英[1] 武良丹[1] 邱天爽[1,2] 

机构地区:[1]九江学院电子工程学院,九江332005 [2]大连理工大学电子与信息工程学院,大连116024

出  处:《生物医学工程学杂志》2010年第3期495-499,共5页Journal of Biomedical Engineering

基  金:国家自然科学基金资助项目(60772037);江西省教育厅科技项目资助(GJJ09344)

摘  要:传统的诱发电位(EP)提取与分离方法中,通常认为EP信号中混入的自发脑电(EEG)等噪声属于高斯分布。近年来一些研究表明了EEG信号具有一定的非高斯特性。α-稳定分布可以更好地描述实际应用中所遇到的具有显著脉冲特性的EEG噪声。本文提出一种适用于EP信号分离提取的基于最小分散系数准则与旋转变换的算法。计算机模拟和分析表明,在分数低阶稳定分布背景噪声条件下,这种算法是一种具有良好韧性的EP信号分离提取方法。Traditional EP analysis is developed under the condition that the background noises in EP are Gaussian distributed. Alpha stable distribution,a generalization of Gaussian,is better for modeling impulsive noises than Gaussian distribution in biomedical signal processing. Conventional blind separation and estimation method of evoked potentials is based on second order statistics (SOS). In this paper,we propose a new algorithm based on minimum dispersion criterion and Givens matrix. The simulation experiments show that the proposed new algorithm is more robust than the conventional algorithm.

关 键 词:诱发电位 α-稳定分布 独立分量分析 分数低阶统计量 Givens矩阵 

分 类 号:TN911.4[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象