检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Environmental and Chemical Engineering,Shanghai University [2]Municipal Water Resource Development and Research Engineering Center(South) [3]Shanghai Municipal Waterworks South Co.Ltd.
出 处:《Journal of Shanghai University(English Edition)》2010年第4期246-250,共5页上海大学学报(英文版)
基 金:Project supported by the Key Special Program on the Science&Technology for the Pollution Control and Treatment of Water Bodies(Grant No.2008ZX07421-004);the Specific Project for Shanghai World Expo 2010(Grant No.07DZ05804);the Shanghai Leading Academic Discipline Project(Grant No.S30109)
摘 要:In order to reduce the microfauna leakage risk from a granular biological activated carbon (GBAC) reactor which employs granular activated carbon (GAC) as adsorption media in drinking water advanced treatment, a novel fiber and granular biological activated carbon (FGBAC) reactor which employs both GAC and activated carbon fiber (ACF) as adsorption media, was developed. The results showed that the species composition of microfauna leaking from FGBAC reactor is almost similar to that leaking from GBAC reactor, however the densities of microfauna leaking from FGBAC reactor is reduced by 26%-81% compared to those leaking from GBAC reactor. In addition, compared to GBAC reactor, FGBAC reactor can increase the removal efflciencies of chemical oxygen demand (COD) and turbidity by 7% and 10%, respectively, during the stable operation period of reactor.In order to reduce the microfauna leakage risk from a granular biological activated carbon (GBAC) reactor which employs granular activated carbon (GAC) as adsorption media in drinking water advanced treatment, a novel fiber and granular biological activated carbon (FGBAC) reactor which employs both GAC and activated carbon fiber (ACF) as adsorption media, was developed. The results showed that the species composition of microfauna leaking from FGBAC reactor is almost similar to that leaking from GBAC reactor, however the densities of microfauna leaking from FGBAC reactor is reduced by 26%-81% compared to those leaking from GBAC reactor. In addition, compared to GBAC reactor, FGBAC reactor can increase the removal efflciencies of chemical oxygen demand (COD) and turbidity by 7% and 10%, respectively, during the stable operation period of reactor.
关 键 词:advanced drinking water treatment biological activated carbon granular activated carbon (GAC) activatedcarbon fiber (ACF) MICROFAUNA
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222