基于改进粒子群算法的水库优化调度研究  被引量:7

Optimal operation of reservoir based on modified particle swarm optimization

在线阅读下载全文

作  者:李璐[1] 陈秀铜[2] 

机构地区:[1]西南石油大学建筑工程学院,四川成都610500 [2]二滩水电开发有限责任公司,四川成都610051

出  处:《人民长江》2010年第14期68-71,共4页Yangtze River

摘  要:在分析以往水库优化调度模型优缺点的基础上,提出了基于动态调节惯性权重的粒子群优化方法的水库优化调度模型,对基本粒子群算法进行了改进。改进的算法通过时变权重的设置来实现,从而克服了PSO搜索精度不高,易陷入局部最优的缺点,并通过引入罚函数解决强约束问题。以某综合利用水库优化调度为实例进行研究,并与动态规划模型计算结果进行对比分析,实例计算表明:改进PSO算法原理简单,易于编程实现,而且占用计算机内存小,收敛速度快,搜索效率高,能以较快的速度收敛到全局最优解,是一种有效的搜索算法。The advantages and disadvantages of previous reservoir optimization operation model are analyzed,and a model of reservoir optimal scheduling based on modified particle swarm optimization(PSO) with dynamic adjustment of inertia weight is presented.The model is realized by setting of time-varying weight,which overcomes the disadvantage of low accuracy and prone to local optimum of PSO.And the restriction can be solved by introducing a strong penalty function.A multipurpose reservoir optimal operation is referred for example,and the results are compared with those of dynamic programming model.It shows that modified PSO algorithm is simple to be realized and occupies small computer memory.Furthermore,it has rapid convergence and high searching efficiency so as to obtain global optimal solution quickly,which is an effective optimal algorithm.

关 键 词:粒子群优化算法 优化调度 水库调度 研究 

分 类 号:TV697.11[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象