Typhoon Vortex Self-Organization in a Baroclinic Environment  

Typhoon Vortex Self-Organization in a Baroclinic Environment

在线阅读下载全文

作  者:滕代高 罗哲贤 余晖 李春虎 代刊 

机构地区:[1]Zhejiang Meteorological Observatory [2]Key Laboratory of Meteorological Disaters,NUIST [3]Laboratory of Typhoon Forecast Technique,Shanghai Typhoon Institute of CMA [4]Shandong Provincial Meteorological Bureau [5]National Meteorological Center

出  处:《Acta meteorologica Sinica》2009年第5期539-549,共11页

基  金:Supported by the Natural Science Foundation of China under Grant No.40333028;the Key Project of Science and Technology Department of Zhejiang Province under Grant No.2007C13G1610002

摘  要:Self-organization of typhoon vortex in a baroclinic environment is studied based on eight numerical experiments with the fifth-generation Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5). The results show that, when there are only two 400-km-away mesoscale axisymmetric vortices with a radius of 500 km in the initial field, the two vortices move away from each other during co-rotating till the distance between them greater than a critical distance named co-rotating critical distance. Then, they stop co-rotating. The situation is changed when a small vortex with a radius of 80 kin is introduced in between the two vortices in the initial field, with the two initially separated vortices approaching each other during their co-rotation, and finally self-organizing into a typhoon-like vortex consisting of an inner core and spiral bands. This result supports both Zhou Xiuji's view in 1994 and the studies in the barotropic framework concerning the interactions between the same and different scales of vortices. Six other experiments are carried out to study the effects of the initial vortex parameters, including the initial position of the small-scale vortex, the distance and intensity of the initially axisymmetric binary mesoscale vortices. It is found that the distance between the initial axisymmetrie mesoscale vortices is the most important parameter that influences the self-organizing process of the final typhoon-like vortex. This conclusion is similar to that obtained from barotropical model experiments.Self-organization of typhoon vortex in a baroclinic environment is studied based on eight numerical experiments with the fifth-generation Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5). The results show that, when there are only two 400-km-away mesoscale axisymmetric vortices with a radius of 500 km in the initial field, the two vortices move away from each other during co-rotating till the distance between them greater than a critical distance named co-rotating critical distance. Then, they stop co-rotating. The situation is changed when a small vortex with a radius of 80 kin is introduced in between the two vortices in the initial field, with the two initially separated vortices approaching each other during their co-rotation, and finally self-organizing into a typhoon-like vortex consisting of an inner core and spiral bands. This result supports both Zhou Xiuji's view in 1994 and the studies in the barotropic framework concerning the interactions between the same and different scales of vortices. Six other experiments are carried out to study the effects of the initial vortex parameters, including the initial position of the small-scale vortex, the distance and intensity of the initially axisymmetric binary mesoscale vortices. It is found that the distance between the initial axisymmetrie mesoscale vortices is the most important parameter that influences the self-organizing process of the final typhoon-like vortex. This conclusion is similar to that obtained from barotropical model experiments.

关 键 词:SELF-ORGANIZATION small-scale vortex mesoscale vortex typhoon vortex three-dimensional vortex 

分 类 号:P444[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象