一种自适应的动态多机制网关发现算法  被引量:1

An adaptive dynamic multi-metric gateway discovery algorithm

在线阅读下载全文

作  者:赵蕴龙[1] 单宝龙[1] 王吉喆 

机构地区:[1]哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001

出  处:《哈尔滨工程大学学报》2010年第5期637-645,共9页Journal of Harbin Engineering University

基  金:黑龙江省自然科学基金资助项目(F200902);中央高校基本科研业务费专项基金资助项目(HEUCF061007)

摘  要:目前存在的网关发现方法主要有主动的、被动的和综合的网关发现,但在实际应用中当网关数量增加时主动网关发现方法的性能也随之下降;而当通信节点数量增多时被动网关发现引起网络开销大幅度增加;综合网关发现方法为了控制广播公告的范围无法确定一个完全适合任何网络环境的最佳广播半径.因此文中提出了一种自适应的动态多机制网关发现算法,该算法可以根据整个网络的状态进行动态调节网关公告半径,同时通信节点根据信道拥塞和竞争程度选择到达网关的路由,避免因大量通信节点对信道的竞争导致拥塞.实验结果表明,该算法能有效地减少网关发现时的网络开销、避免某些区域通信量过高造成的数据包丢失,进而提高了数据包的投递率.At present the main strategies of existing gateway discovery is proactive,reactive and hybrid.While the number of gateway increasing,the performance of the proactive gateway discovery approach is going to down.Reactive gateway discovery approach induces a significant increasing on overhead of networks when the number of communication nodes increasing.The problem of hybrid gateway discovery approaches is unable to determine the opti-mal of gateway advertisement radius to be adapt to any networks environment,in order to control the scope of gateway advertisement.Then,an adaptive dynamic multi-metric gateway discovery algorithm is presented,which makes dynamic adjustments on gateway advertisement radius according to the state of the whole network.Communication nodes are according with congestion and contention to choose the route to reach gateway,and avoid that congestion caused by a large number of communication nodes of channel competition.And then experiment is done for verifying the performance.The experimental results show that the algorithm reduces the network overheads in gateway discovery effectively,meanwhile avoids packet loss caused by excessive traffic in certain area and thus improves the packet delivery rates.

关 键 词:网关发现 自适应动态多机制 网络开销 拥塞和竞争 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象