自适应递推核学习及在橡胶混炼过程在线质量预报的工业应用  被引量:2

Adaptive recursive kernel learning with application to online quality prediction of industrial rubber mixing process

在线阅读下载全文

作  者:刘毅[1] 张锡成[2] 朱可辉 王海清[1] 李平[1] 

机构地区:[1]浙江大学工业控制技术国家重点实验室工业控制研究所,浙江杭州310027 [2]杭州朝阳橡胶有限公司,浙江杭州310018 [3]青岛市工业信息化技术重点实验室,山东青岛266045

出  处:《控制理论与应用》2010年第5期609-614,共6页Control Theory & Applications

基  金:国家科技支撑计划资助项目(2007BAF14B02);教育部留学回国人员科研启动基金资助项目

摘  要:实时测取混炼胶门尼粘度是橡胶和轮胎厂十分关心和亟待解决的问题.采用两阶段递推核学习建模方法,按配方快速建立橡胶混炼过程门尼粘度的预报模型,并对模型进行递推更新以适应过程的快速变化.结合混炼过程的特点,提出一种适合门尼粘度的性能指标,并推导了采用快速留一交叉验证法对核学习模型参数进行自适应选择,避免人为选取参数的片面性.所研发的先进密炼信息集成与控制系统已在国内多家大型橡胶和轮胎厂上线应用.门尼粘度实时预报的工业应用结果表明了其实用和有效性,对橡胶混炼过程具有重要的现实和经济意义.Mooney viscosity having significant impact on the properties of the polymer is very difficult to be measured online.A new modeling method using two-stage recursive kernel-learning is proposed for online modeling and prediction of Mooney viscosity in the rubber mixing processes.The model can be established online for each recipe and recursively updated to adapt fast changes of the process.In the present method,a novel error evaluation index is formulated based on the mixing properties.The model parameters are online selected adaptively,using the fast leave-one-out cross validation criterion,to overcome the embarrassment of parameter selection.An industrial system named as Smart Mixing Information Integrated Control System has been developed and successfully applied to several large-scale rubber and tire manufacturers in China.The results of Mooney viscosity online prediction show that the developed method is very efficient and thus has real economic importance for rubber mixing processes.

关 键 词:橡胶混炼过程 门尼粘度 核学习 递推估计 参数选择 交叉验证 

分 类 号:TQ330.63[化学工程—橡胶工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象