检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221116
出 处:《中国科技论文在线》2010年第2期120-123,共4页
摘 要:针对现有知识迁移方法仅适用于同质强化学习Agent的问题,提出一种能够在具有不同状态动作空间的异质Agent间迁移知识的Q学习算法。该算法的主要思想是通过新旧Agent共同学习过的任务,利用神经网络离线学习两Agent间的Q值函数映射关系,利用构造的Q值函数映射器把旧Agent学过而新Agent没有学过的任务的Q值映射到新Agent上,从而可以减少新Agent的学习尝试次数,提高学习速度。10×10格子世界仿真结果验证了所提知识迁移Q学习算法的有效性。Aiming at the problem of the existing knowledge transfer methods are only suitable for homogenous reinforcement learning agents, a kind of Q learning algorithm that can transfer knowledge between heterogeneous Agents with different state and action spaces. The main idea of the proposed Q leaming algorithm can be described as the follows. Based on a task that was already learned by an old and a new Agent, a neural network was used to off-line learn a mapping relationship of Q value function between the two Agents. The constructed mapping of Q value function was then used to obtain Q value of the new Agent in a new task that was already learned by the old Agent while was not learned by the new Agent. The proposed Q learning algorithm can decrease the number of trials of the new Agent and so as to improve learning speed. Simulation results of 10×10 mazes illustrate the validity of the proposed Q learning algorithm.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145