检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州科技学院土木工程学院,江苏苏州215011
出 处:《常州工学院学报》2010年第1期1-4,共4页Journal of Changzhou Institute of Technology
基 金:院博士启动基金项目(ust20082058)
摘 要:类似弹性力学中求解板弯曲问题的方法,以挠度为自变量,建立四阶微分方程,然后通过满足基本方程和边界条件直接求出超静定梁各段的挠曲线方程,从而静定梁和超静定梁可按统一的方式求解挠曲线。同时给出该方法基于计算机软件的快速实现。文中工作扩大了积分法的应用范围,并与后续弹性力学课程中求解板挠度的方法相互对照,加深了对固体力学的边值问题的理解。Similar to the method of solving the plate bending problem in Elasticity Mechanics,the forth-order differential equation is established based on the variable of deflection,then the deflection expressions of each segment are solved directly by the fundamental equations and the boundary conditions,so the deflection curves can be solved for statically determinate beam and statically indeterminate beam.The quick realization of the presented method by software is also shown.The work extends the application of the integration method,and compares the method of solving the plate bending problem in Elasticity Mechanics.The boundary value problem in Solid Mechanics can be understood more deeply.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.136.24