检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李庆波[1] 阎侯赖[1] 李丽娜[1] 吴瑾光[2] 张广军[1]
机构地区:[1]北京航空航天大学仪器科学与光电工程学院,精密光机电一体化技术教育部重点实验室,北京100191 [2]北京大学化学与分子工程学院,北京100871
出 处:《光谱学与光谱分析》2010年第8期2115-2119,共5页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(60708026);北京航空航天大学蓝天新星项目资助
摘 要:采用偏稳健M回归方法有效地解决了人体血糖浓度近红外无创检测研究过程中由于样本奇异值影响模型稳健性的问题。该方法源于现有的迭代变权偏最小二乘法,计算快、易于实现,具有M估计的所有性质,且当权函数选择合适时,能降低奇异值的影响,建立具有稳健性的校正模型。采用该方法对近红外光谱实验数据进行了处理,并与传统的偏最小二乘(partialleast squares,PLS)建模方法进行了比较。结果表明,与PLS相比,该方法可建立稳健的校正模型提高预测精度,更适合复杂样品建模,对于人体血糖浓度近红外无创检测的进一步研究具有应用价值。In the study of non-invasive measurement of human blood glucose concentration with near-infrared spectroscopy,the partial robust M-regression (PRM) is proposed in the present paper to solve the robustness of calibration model affected by outliers existing in the spectra data set.While keeping the good properties of M-estimators if an appropriate weighting scheme is chosen,PRM inherits the speed of computation and easy realization of the iterative reweighted partial least squares (IRPLS) algorithm,but is robust to all types of outliers.With the pretreatment of spectra based on PRM,the root mean square error of prediction (RMSEP) of calibration model was presented and compared with partial least squares (PLS).Experimental results show that the robust calibration model PRM produces better prediction of glucose than the model of PLS when the components of the samples increase which is significant for non-invasive prediction of blood glucose levels.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117