检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ting-Kai Wang Quan Dang Pei-Yuan Pan
机构地区:[1]Faculty of Computing, London Metropolitan University, London N7 8DB, UK
出 处:《International Journal of Automation and computing》2010年第3期310-316,共7页国际自动化与计算杂志(英文版)
摘 要:This paper presents a new algorithm of path planning for mobile robots, which utilises the characteristics of the obstacle border and fuzzy logical reasoning. The environment topology or working space is described by the time-variable grid method that can be further described by the moving obstacles and the variation of path safety. Based on the algorithm, a new path planning approach for mobile robots in an unknown environment has been developed. The path planning approach can let a mobile robot find a safe path from the current position to the goal based on a sensor system. The two types of machine learning: advancing learning and exploitation learning or trial learning are explored, and both are applied to the learning of mobile robot path planning algorithm. Comparison with A* path planning approach and various simulation results are given to demonstrate the efficiency of the algorithm. This path planning approach can also be applied to computer games.This paper presents a new algorithm of path planning for mobile robots, which utilises the characteristics of the obstacle border and fuzzy logical reasoning. The environment topology or working space is described by the time-variable grid method that can be further described by the moving obstacles and the variation of path safety. Based on the algorithm, a new path planning approach for mobile robots in an unknown environment has been developed. The path planning approach can let a mobile robot find a safe path from the current position to the goal based on a sensor system. The two types of machine learning: advancing learning and exploitation learning or trial learning are explored, and both are applied to the learning of mobile robot path planning algorithm. Comparison with A* path planning approach and various simulation results are given to demonstrate the efficiency of the algorithm. This path planning approach can also be applied to computer games.
关 键 词:Path planning fuzzy reasoning unknown environment mobile robot learning algorithm.
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置] X24[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13