检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科学技术大学电子科学与工程学院ATR国家重点实验室长沙410073
出 处:《计算机辅助设计与图形学学报》2010年第8期1366-1373,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(40971245)
摘 要:为了能有效地表述场景图像的语义特性,提出一种基于图像块上下文信息的场景图像分类框架.首先用规则网格将图像分块,并提取每个块的SIFT特征;然后用K均值算法对训练图像的块特征聚类,形成块类型的码本;再根据此码本对图像块进行量化,得到图像的视觉词汇表示,形成视觉词汇图,并在其上建立2类视觉词汇模型:相邻共现的不同视觉词汇对模型和连续共现的相同视觉词汇群模型;最后应用空间金字塔匹配建立视觉词汇的上下文金字塔特征,并采用SVM分类器进行分类.实验结果证明,在常用的场景图像库上,文中方法比已有的典型方法具有更好的场景分类性能.To describe the semantic characteristic of scene images efficiently, this paper proposes a scene image classification framework based on image patch context information. First, the patches of images are got by a regular grid, and their SIFT (scale invariant feature transform) features are extracted. Then the SIFT features of training images are clustered with the K-means algorithm to form a codebook of the patches. We quantize the patches of images according to this codebook and get the visual word representation of the image, which forms a visual word map. In the map, two kinds of visual word models are set up: one is visual word pair with different words and the other is visual word group that consists of the same and consecutive words. Finally by applying spatial pyramid matching, the context pyramid features of visual words are obtained and classified with SVM. Experiments in frequently used scene image databases show that our method has got better performance than the existing typical methods in classifying scene images.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151