Scale-Invariant Occupancy of Phase Space and Additivity of Nonextensive Entropy S_q  

Scale-Invariant Occupancy of Phase Space and Additivity of Nonextensive Entropy S_q

在线阅读下载全文

作  者:赵伟 伞冶 

机构地区:[1]Control and Simulation Center,Harbin Institute of Technology

出  处:《Journal of Shanghai Jiaotong university(Science)》2010年第4期441-446,共6页上海交通大学学报(英文版)

基  金:the National Natural Science Foundation of China(No.60474069)

摘  要:Phase space can be constructed for N equal and distinguishable binary subsystems which are correlated in a scale-invariant manner. In the paper, correlation coefficient and reduced probability are introduced to characterize the scale-invariant correlated binary subsystems. Probabilistic sets for the correlated binary subsystems satisfy Leibnitz triangle rule in the sense that the marginal probabilities of N-system are equal to the joint probabilities of the (N - 1)-system. For entropic index q ≠ 1, nonextensive entropy Sq is shown to be additive in the scale-invariant occupation of phase space.<Abstract>Phase space can be constructed for N equal and distinguishable binary subsystems which are correlated in a scale-invariant manner.In the paper,correlation coefficient and reduced probability are introduced to characterize the scale-invariant correlated binary subsystems.Probabilistic sets for the correlated binary subsys-tems satisfy Leibnitz triangle rule in the sense that the marginal probabilities of N-system are equal to the joint probabilities of the(N-1)-system.For entropic index q=1,nonextensive entropy Sq is shown to be additive in the scale-invariant occupation of phase space.

关 键 词:nonextensive entropy ADDITIVITY correlation SCALE-INVARIANCE 

分 类 号:O414.22[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象