出 处:《Chinese Journal of Polymer Science》2010年第5期819-828,共10页高分子科学(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.20844001 and 20874067);the Key Project of Chinese Ministry of Education(No.209049);Natural Science Fund for Colleges and Universities of Jiangsu Province(No.08KJB150015).
摘 要:A series of 3-arm ABC and AA'B and 4-arm ABCD, AA'BC and AA'A"B heteroarm star polymers comprising one poly(4-methylphenyl vinyl sulfoxide) segment and other segments such as polystyrene, poly(a-methylstyrene), poly(4-methoxystyrene) and poly(4-trimethylsilylstyrene) were synthesized by living anionic polymerization based on diphenylethylene (DPE) chemistry. The DPE-functionalized polymers were synthesized by iterative methodology, and the objective star polymers were prepared by two distinct methodologies based on anionic polymerization using DPE-functionalized polymers. The first methodology involves an addition reaction of living anionic polymer with excess DPE-functionalized polymer and a subsequent living anionic polymerization of 4-methylphenyl vinyl sulfoxide (MePVSO) initiated from the in situ formed polymer anion with two or three polymer segments. The second methodology comprises an addition reaction of DPE-functionalized polymer with excess sec-BuLi and a following anionic polymerization of MePVSO initiated from the in situ formed polymer anion and 3-methyl-1,1-diphenylpentyl anion as well. Both approaches could afford the target heteroarm star polymers with predetermined molecular weight, narrow molecular weight distribution (Mw/Mn 〈 1.03) and desired composition, evidenced by SEC, 1H-NMR and SLS analyses. These polymers can be used as model polymers to investigate structure-property relationships in heteroarm star polymers.A series of 3-arm ABC and AA'B and 4-arm ABCD, AA'BC and AA'A"B heteroarm star polymers comprising one poly(4-methylphenyl vinyl sulfoxide) segment and other segments such as polystyrene, poly(a-methylstyrene), poly(4-methoxystyrene) and poly(4-trimethylsilylstyrene) were synthesized by living anionic polymerization based on diphenylethylene (DPE) chemistry. The DPE-functionalized polymers were synthesized by iterative methodology, and the objective star polymers were prepared by two distinct methodologies based on anionic polymerization using DPE-functionalized polymers. The first methodology involves an addition reaction of living anionic polymer with excess DPE-functionalized polymer and a subsequent living anionic polymerization of 4-methylphenyl vinyl sulfoxide (MePVSO) initiated from the in situ formed polymer anion with two or three polymer segments. The second methodology comprises an addition reaction of DPE-functionalized polymer with excess sec-BuLi and a following anionic polymerization of MePVSO initiated from the in situ formed polymer anion and 3-methyl-1,1-diphenylpentyl anion as well. Both approaches could afford the target heteroarm star polymers with predetermined molecular weight, narrow molecular weight distribution (Mw/Mn 〈 1.03) and desired composition, evidenced by SEC, 1H-NMR and SLS analyses. These polymers can be used as model polymers to investigate structure-property relationships in heteroarm star polymers.
关 键 词:Star polymer Anionic polymerization MACROMONOMER DPE chemistry.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...