检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]绵阳师范学院,四川绵阳621000
出 处:《微电子学与计算机》2010年第8期119-123,共5页Microelectronics & Computer
基 金:四川省教育厅青年基金(2006B082);绵阳市科技局基金(07Y004-4)
摘 要:异构环境下任务调度是NP问题,它关注大规模的资源和任务调度,要求采用的调度算法能够具有高效性.随着任务数和资源数的增加,遗传算法表现出慢速收敛的缺点.为了克服其缺点,在改进的遗传算法的基础上,增加了分组和负载平衡处理策略,提出了一种混合遗传调度策略.仿真实验表明,基于改进遗传算法的混合调度策略比传统的调度策略性能更优,其算法更符合复杂的异构环境,能更好满足系统的时间特性和最小化资源开销的问题.Task scheduling in heterogeneous environment is a NP problem, it is concerned about the large-scale resource and task scheduling, requires the scheduling algorithm is highly efficient. As the number of tasks and resources to increase the number of genetic algorithm to show the shortcomings of slow convergence. In order to overcome its shortcomings, this paper improved genetic algorithm based on the increased packet processing and load balancing strategy, a hybrid genetic scheduling policy, simulation experiments show that the hybrid genetic algorithm-based scheduling policy than the traditional scheduling strategy better performance, the algorithm more complex, heterogeneous environment, the system can better meet the characteristics of time and resources to minimize the overhead issue.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.215.114