Interpolating triangular meshes by Loop subdivision scheme  被引量:6

Interpolating triangular meshes by Loop subdivision scheme

在线阅读下载全文

作  者:DENG ChongYang WANG GuoZhao 

机构地区:[1]Institute of Applied Mathematics and Engineering Computations, Hangzhou Dianzi University Hangzhou 310018, China [2]Department of Mathematics, Zhejiang University, Hangzhou 310027, China

出  处:《Science China(Information Sciences)》2010年第9期1765-1773,共9页中国科学(信息科学)(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.10926058,60904070,60673032,60773179);the National Basic Research Program of China(Grant No.2004CB318000);the Scientific Start-up Foundation of Hangzhou Dianzi University(Grant No.KYS075608073)

摘  要:Using the limit point formula of the Loop subdivision scheme, we propose a very simple and efficient method for constructing interpolation surface of triangular meshes by Loop subdivision scheme. The excellent properties of the method are: (1) Locality: the perturbation of a given vertex only influences the surface shape near this vertex. (2) Efficiency: the locations of new points can be computed with explicit formulae. (3) Easiness in implementation: only the geometric rule of the first step should be modified. (4) Freedom: for each edge, there is one degree of freedom to adjust the shape of the interpolation surface. (5) Easiness in generalization: it is easy to generalize our method to other approximation subdivision schemes with explicit formulae to compute limit point.Using the limit point formula of the Loop subdivision scheme, we propose a very simple and efficient method for constructing interpolation surface of triangular meshes by Loop subdivision scheme. The excellent properties of the method are: (1) Locality: the perturbation of a given vertex only influences the surface shape near this vertex. (2) Efficiency: the locations of new points can be computed with explicit formulae. (3) Easiness in implementation: only the geometric rule of the first step should be modified. (4) Freedom: for each edge, there is one degree of freedom to adjust the shape of the interpolation surface. (5) Easiness in generalization: it is easy to generalize our method to other approximation subdivision schemes with explicit formulae to compute limit point.

关 键 词:computer aided geometric design subdivision surface approximating subdivision scheme Loop surface surface interpolating 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TP391.72[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象