检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《公路交通科技》2010年第8期66-69,80,共5页Journal of Highway and Transportation Research and Development
基 金:GDUE开放基金项目(SKLGDUEK0915);湖南省自然科学基金项目(09JJ3113);湖南省交通厅科技项目(200717)
摘 要:隧道围岩级别判断存在较多的不确定影响因素,特别是各影响因素的参数信息和样本资料有限,给判断工作造成了很大的困难。利用专为小样本统计分析而提出的支持向量机方法,在分析围岩级别划分的基础上,选取隧道围岩级别划分需要考虑的9个关键因素,将这9个因素作为输入参数,同时将围岩划分为5个等级作为输出参数,建立了围岩级别判断的小样本统计模型。利用该模型对二郎山隧道的围岩级别进行测试,并与ART1神经网络和BP神经网络的结果进行对比,表明将基于小样本统计的支持向量机理论用于围岩级别判断是可行的,并且具有很好的精度。There are many uncertainties in grade distinguishing of surrounding rock,especially limitation of parameter information and sample data of various influencing factors,which has caused difficulty for grade distinguishing of surrounding rock.After analyzing the foundational theory of classification of surrounding rock,by using the method of support vector machine proposed for small sample statistics,9 key influencing factors for tunnel surrounding rock classification were selected as input parameters,and the surrounding rock was classified into 5 grades as output parameters.Then the small sample statistical model for distinguishing the grade of surrounding rock was established to test the surrounding rock grade of Erlang tunnel.The test results were compared with those worked by the methods of ART1 neural network and BP neural network.It indicates that distinguishing grade of surrounding rock with the method of support vector machine based on small sample statistics is feasible and accurate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.8.67