MM5 Simulations of the China Regional Climate During the Mid-Holocene  被引量:1

MM5 Simulations of the China Regional Climate During the Mid-Holocene

在线阅读下载全文

作  者:刘煜 何金海 李维亮 陈隆勋 李薇 张博 

机构地区:[1]Chinese Academy of Meteorological Sciences [2]Nanjing University of Information Science and Technology

出  处:《Acta meteorologica Sinica》2010年第4期468-483,共16页

基  金:the National Natural Science Foundation of China under Grant Nos.40231011,90102055,and 40233034.

摘  要:Using a regional climate model MM5 nested with an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate responses of the mid-Holocene climate to different factors over China. Model simulations of the mid-Holocene climate change, especially the precipitation change, are in good agreement with the geologic records. Model results show that relative to the present day (PD) climate, the temperature over China increased in the mid-Holocene, and the increase in summer is more than that in winter. The summer monsoon strengthened over the eastern China north of 30°N, and the winter monsoon weakened over the whole eastern China; the precipitation increased over the west part of China, North China, and Northeast China, and decreased over the south part of China. The sensitive experiments indicate that changes in the global climate (large-scale circulation background), vegetation, earth orbital parameter, and CO2 concentration led to the mid-Holocene climate change relative to the PD climate, and changes in precipitation, temperature and wind fields were mainly affected by change of the large-scale circulation background, especially with its effect on precipitation exceeding 50%. Changes in vegetation resulted in increasing of temperature in both winter and summer over China, especially over eastern China; furthermore, its effect on precipitation in North China accounts for 25% of the total change. Change in the orbital parameter produced the larger seasonal variation of solar radiation in the mid-Holocene than the PD, which resulted in declining of temperature in winter and increasing in summer; and also had an important effect on precipitation with an effect equivalent to vegetation in Northeast China and North China. During the mid-Holocene, CO2 content was only 280×10^-6, which reduced temperature in a very small magnitude. Therefore, factors affecting the mid-Holocene climate change over China from strong to weak are large-scale circulatioUsing a regional climate model MM5 nested with an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate responses of the mid-Holocene climate to different factors over China. Model simulations of the mid-Holocene climate change, especially the precipitation change, are in good agreement with the geologic records. Model results show that relative to the present day (PD) climate, the temperature over China increased in the mid-Holocene, and the increase in summer is more than that in winter. The summer monsoon strengthened over the eastern China north of 30°N, and the winter monsoon weakened over the whole eastern China; the precipitation increased over the west part of China, North China, and Northeast China, and decreased over the south part of China. The sensitive experiments indicate that changes in the global climate (large-scale circulation background), vegetation, earth orbital parameter, and CO2 concentration led to the mid-Holocene climate change relative to the PD climate, and changes in precipitation, temperature and wind fields were mainly affected by change of the large-scale circulation background, especially with its effect on precipitation exceeding 50%. Changes in vegetation resulted in increasing of temperature in both winter and summer over China, especially over eastern China; furthermore, its effect on precipitation in North China accounts for 25% of the total change. Change in the orbital parameter produced the larger seasonal variation of solar radiation in the mid-Holocene than the PD, which resulted in declining of temperature in winter and increasing in summer; and also had an important effect on precipitation with an effect equivalent to vegetation in Northeast China and North China. During the mid-Holocene, CO2 content was only 280×10^-6, which reduced temperature in a very small magnitude. Therefore, factors affecting the mid-Holocene climate change over China from strong to weak are large-scale circulatio

关 键 词:MID-HOLOCENE China earth orbital parameter VEGETATION large-scale circulation background field 

分 类 号:P463.1[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象