基于Q-学习算法的交通控制与诱导协同模式的在线选择  被引量:3

On-line selection method of the traffic control and route guidance collaboration mode based on Q-learning algorithm

在线阅读下载全文

作  者:杨庆芳[1,2] 杨朝[2] 

机构地区:[1]吉林大学汽车动态模拟国家重点实验室,长春130022 [2]吉林大学交通学院,长春130022

出  处:《吉林大学学报(工学版)》2010年第5期1215-1219,共5页Journal of Jilin University:Engineering and Technology Edition

基  金:'863'国家高技术研究发展计划项目(2007AA12Z242)

摘  要:采用Q-学习算法实现了交通控制与诱导协同模式的在线选择。首先,采用Q-学习算法训练多智能体,根据多智能体内部的推理得到不同交通状态下的最优协同模式,最终实现交通控制与交通诱导协同模式的在线选择与转换。仿真结果表明,本文提出的基于Q-学习算法的协同模式选择方法在一般交通拥挤状态下具有较好的协同控制效果,对比离线式模式选择方法更能适应交通状态的不断变化,从而达到有效避免严重交通拥堵、改善路网性能的目的。The on-line traffic control and route guidance collaboration mode selection was realized by the Q-learning algorithm. Using the multi-intelligence agents trained with the Q-learning algorithm, the optimal collaboration mode was obtained under different traffic conditions according to the inner inference of the multi-intelligence agent. So,the on-line selection and switching of the traffic control and route guidance collaboration mode was accomplished. The simulation results show that the proposed collaboration mode selection method based on the Q-learning is characterized by better collaboration control effect under the ordinary traffic congestion condition and more adaptive to constantly changing traffic condition than the traditional off-line mode selection method. The proposed method is helpful to avoiding the heavy traffic congestion and improving the traffic network performance.

关 键 词:交通运输工程 交通控制与诱导协同 模式选择 Q-学习算法 回报函数 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象