检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑小龙[1] 叶红玲[1] 隋允康[1] 宇慧平[1]
机构地区:[1]北京工业大学机械工程与应用电子技术学院工程数值模拟中心,北京100124
出 处:《科技导报》2010年第17期36-41,共6页Science & Technology Review
基 金:国家自然科学基金项目(10872012);北京自然科学基金项目(3093019);北京市教委项目(KM200910005005);大连理工大学工业装备结构分析国家重点实验室基金项目(GZ0819)
摘 要:为了满足实际工程问题中响应函数与样本值最大距离极小化的需求,本文提出一种新的响应面函数的拟合方法。该方法将样本点的响应面函数拟合问题转换为求解一类线性规划问题。建立数学模型,采用数值方法拟合出一次和二次响应面函数的表达式。通过多个数值算例,与K-S函数法实现最大差值极小化拟合的响应面函数结果以及最小二乘法拟合响应面结果进行比较,本文方法均得到较小的最大离差值,结果表明该方法的可行性和有效性,丰富了响应面的构造方法。In order to meet the requirements of minimizing the maximum distance between the response function and the sample values in practical engineering problems,a new method of fitting the response surface function is proposed in this paper.The problem of fitting the response surface function with sample points is transformed into one of solving a linear programming problem in this method.A mathematical model about sample points is established.Linear and quadratic response surface function expressions are fitted by numerical methods.Comparing the fitted results of minimizing the maximum difference by the Kreisselmerier-Steinhauser(K-S) function method and those by the least squares method,the method used in this paper give results better agreed with those of the K-S function method,with the maximum differences smaller than that of the least squares method.Four numerical examples show that this method is reasonable and effective.In addition,this method provides a new constructing method for the response surface function.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30