一种时变耦合模型在油井产量预测中的应用  被引量:6

Application of Time Varying Coupling Model in Prediction of Well Production

在线阅读下载全文

作  者:金宝强 童凯军 孙红杰[2] 轩红彦[3] 

机构地区:[1]中海石油(中国)有限公司天津分公司渤海油田勘探开发研究院,天津300452 [2]中海油田服务股份有限公司天津分公司,天津300452 [3]中国石油天然气股份有限公司青海油田分公司采油一厂,青海敦煌816400

出  处:《科技导报》2010年第17期72-76,共5页Science & Technology Review

摘  要:油井产量随时间的变化关系受多种因素的影响,它们之间是一种极其复杂的非线性关系,常规油藏工程研究方法往往受相关参数的不确定性所限,预测误差偏大。分析认为油井产量数据具有时间序列特征,引入相空间重构技术,利用G-P法求出最佳嵌入维数,对油井产量构成的时间序列进行混沌特性识别。在此基础上,利用支持向量机(SVM)方法,构建具有时变特性的混沌-SVM耦合模型,该模型对中、短期的油井产量预测具有很高的精度,在实际应用中,可以不断补充新的历史数据,进行滚动预测,可靠性更高。实例W8-5井的应用效果也表明,预测结果平均相对误差仅为7%,显示出模型具有较好的预测效果和实用价值。The variation of the oil well production against time is controlled by several factors,in an extremely complicated nonlinear manner.The conventional petroleum reservoir engineering method suffers often from uncertainty of the correlation parameters and a large prediction error.Our analysis shows that the oil well production data have some features of time series.Therefore,the technique of the phase space reconstruction and the G-P method can used to obtain the optimal embed dimension and then to identify the time series of the well oil production.On this basis,by using the support vector machine method,the chaos-SVM model with time varying character is built,.with a very high precision for short-term well productions.In a real application,we can supplement the new historical data in real time to make the rolling prediction.The example W8-5 well application indicates that the relative error of the forecast results is only 7%,which shows that the coupling model has a good forecast ability and is of practical value.

关 键 词:时间序列 相空间 G-P法 混沌-SVM模型 油井产量 

分 类 号:TE328[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象