检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学飞行器结构力学与控制教育部重点实验室,江苏南京210016 [2]南京航空航天大学结构与强度研究所,江苏南京210016
出 处:《振动工程学报》2010年第4期415-419,共5页Journal of Vibration Engineering
基 金:国家自然科学基金资助项目(10772076);江苏省研究生培养创新项目(CX10B-088Z)
摘 要:基于状态空间和小波理论提出了时变系统的参数识别方法。该方法将线性时变系统的二阶振动微分方程转化为状态空间里的一阶微分方程组,再对系统的自由响应数据进行小波变换,利用小波尺度函数的正交性,又将一阶微分方程组的求解转化为线性代数方程组的求解问题。识别出等效的系统转移矩阵,再利用特征值分解,可以得到系统的模态参数,然后将等效的系统转移矩阵与实际物理模型中的质量、刚度和阻尼矩阵对照,识别出系统的刚度和阻尼矩阵。以4层楼房剪切模型为例,对突变、线性变化和周期变化3种情形下的时变参数进行了识别,仿真算例验证了该方法的正确性和有效性。A parameter identification method is presented in this paper based on state space and wavelet transform method. For an arbitrarily linear time-varying system, the second-order vibration equations can firstly be rewritten and reduced to first-order difference equations by using state-space method. Subsequently, free response signals are decomposed using the Daubechies wavelet scaling functions, and then the state-space equations of the time-varying dynamic system are transformed into simple linear equations based on the orthogonality of the scaling functions. The varying equivalent state-space system matrices of structures at each moment are then identified directly by solving the linear equations. The system modal parame- ters are extracted though eigenvalue decomposition of the state-space system matrices and the stiffness and damping matrices are determined by comparing the identified equivalent system matrices with the physical system matrices. Finally, a fourstorey shear-beam building model with three kinds of time-varying cases is investigated. Numerical results show that the proposed method is accurate and effective to identify the time-varying physical parameters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.27