检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江同济科技职业学院,浙江杭州311231 [2]杭州电子科技大学计算机学院,浙江杭州310018
出 处:《遥感技术与应用》2010年第4期486-492,共7页Remote Sensing Technology and Application
基 金:浙江省水利厅科技计划重点项目"基于多源信息融合的旱情遥感监测研究"(RB0927)
摘 要:遥感信息在大面积土壤水分监测中具有不可替代的优势。通过对试验区域的气象数据、土壤类型数据、土壤和水体的光谱特征曲线、多时相遥感影像数据等进行预处理,提取图像信息和属性数据,并对土地利用类型和植被覆盖度进行划分。基于土壤的光谱响应机制建立像元反射光谱信息分解模型,以此计算出该区域土壤容积含水率。结果表明该方法对于低植被区的监测精度较高(理论精度89.78%),可作为土壤水分监测预警的依据。Remote Sensing(RS) based soil moisture monitoring and estimating has advantages than conventional methods in large scale land survey and environmental evaluations due to its convenience in data acquisition.The procedure of soil moisture estimation based on multi-source information fusion is proposed.First,the multi-source data,such as weather information,soil type,spectrum characteristic curves and RS images are preprocessed to get the attribute data.The land utilization classification and vegetation cover intensity are calculated based on the formerly obtained data and the real survey data.Then a spectral decomposition model is proposed for soil moisture estimation.A case study is provided and the computational results of soil moisture show that the approximate estimation precision is 89.78% in lands with lower vegetation cover intensity.Moreover,the computational results fit fairly well with the measured data and show that the proposed model is feasible to be used for drought monitoring and early warning.
分 类 号:P343.8[天文地球—水文科学] TP79[天文地球—地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.109