检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学中荷生物医学与信息工程学院,辽宁沈阳110004 [2]首都医科大学附属北京天坛医院神经影像中心,北京100050
出 处:《东北大学学报(自然科学版)》2010年第9期1250-1253,共4页Journal of Northeastern University(Natural Science)
基 金:辽宁省自然科学基金资助项目(20072038)
摘 要:针对肺部计算机辅助诊断中孤立肺结节识别容易受噪声、气管、血管的干扰问题,提出一种融合空间信息及加权模糊聚类的肺结节识别算法.该方法利用融合像素空间信息及带特征权重的模糊C均值聚类算法实现感兴趣区域分割;利用特征选择算法计算感兴趣区域各特征权重,加权模糊C均值聚类算法分类感兴趣区域,识别肺结节.对比实验证明,该算法对感兴趣区域分割抗噪声性增强;感兴趣区域分类准确率提高;整体算法对肿瘤的检出率较高,漏诊率降低,为医生诊断早期肺癌病灶提供更加准确的客观依据.In the computer-aided detection(CAD) for lung,the recognition of solitary pulmonary nodules may be interrupted by noise,trachea,bronchial or veins.A method is therefore proposed to recognize lung nodule by integrating the feature weighted fuzzy C-means clustering with pixel spatial information so as to segment the region of interest(ROI).Every feature weight in ROI is calculated by the feature selection algorithm,and the weighted fuzzy C-means clustering algorithm is used to classify ROI,thus recognizing the lung nodules.Experimental results showed that the ROI segmentation algorithm is capable of denoising robustly and that the accuracy of ROI classification is improved.The integrated algorithm proposed has a high sensitivity to tumors with low undetected rate.It can provide helpful information to quickly identify suspicious focus in early stage of lung cancer.
关 键 词:孤立型肺结节 空间信息 加权模糊C均值聚类 特征选择
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15